Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis
نویسندگان
چکیده
Xylans are the most abundant noncellulosic polysaccharides in lignified secondary cell walls of woody dicots and in both primary and secondary cell walls of grasses. These polysaccharides, which comprise 20-35% of terrestrial biomass, present major challenges for the efficient microbial bioconversion of lignocellulosic feedstocks to fuels and other value-added products. Xylans play a significant role in the recalcitrance of biomass to degradation, and their bioconversion requires metabolic pathways that are distinct from those used to metabolize cellulose. In this review, we discuss the key differences in the structural features of xylans across diverse plant species, how these features affect their interactions with cellulose and lignin, and recent developments in understanding their biosynthesis. In particular, we focus on how the combined structural and biosynthetic knowledge can be used as a basis for biomass engineering aimed at developing crops that are better suited as feedstocks for the bioconversion industry.
منابع مشابه
Xylan epitope profiling: an enhanced approach to study organ development-dependent changes in xylan structure, biosynthesis, and deposition in plant cell walls
Background Xylan is a major hemicellulosic component in the cell walls of higher plants especially in the secondary walls of vascular cells which are playing important roles in physiological processes and overall mechanical strength. Being the second most abundant cell wall polymer after cellulose, xylan is an abundant non-cellulosic carbohydrate constituent of plant biomass. Xylan structures h...
متن کاملBiochemical control of xylan biosynthesis - which end is up?
Xylans are major components of land plant secondary cell walls and are required for normal plant growth and development. Secondary walls also account for the bulk of lignocellulosic biomass, a potential feedstock for large-scale production of biofuels. Glucuronoxylan and arabinoxylan affect the conversion of lignocellulosic biomass to fermentable sugar, a crucial and expensive step in biofuel p...
متن کاملAssembly of Xylanases into Designer Cellulosomes Promotes Efficient Hydrolysis of the Xylan Component of a Natural Recalcitrant Cellulosic Substrate
UNLABELLED In nature, the complex composition and structure of the plant cell wall pose a barrier to enzymatic degradation. Nevertheless, some anaerobic bacteria have evolved for this purpose an intriguing, highly efficient multienzyme complex, the cellulosome, which contains numerous cellulases and hemicellulases. The rod-like cellulose component of the plant cell wall is embedded in a colloid...
متن کاملGene stacking of multiple traits for high yield of fermentable sugars in plant biomass
Background Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets...
متن کاملXylan Biosynthesis and Modification Characterisation of a Glycosyltransferase and a Glycoside Hydrolase in Hybrid Aspen
Wood is an important renewable material used by humans for a variety of downstream applications. The basic subcellular structure in wood is the cell wall, mainly consisting of the cross-linked polymers cellulose, hemicellulose, and lignin. Xylan is the main hemicellulose found in angiosperm wood, and its biosynthesis and effects on wood properties in hybrid aspen (Populus tremula x tremuloides)...
متن کامل